
COMP 4360 Assignment 2
Nathan Gagné #7855437
April 23rd 2022
1. a)

The main idea of using ridge regression is to reduce sensitivity to noise and
overfitting by applying some regularization that reduces the effect of weights
in w. We introduce some amount of bias to reduce the variance of our model.
This may result in the model performing slightly worse during training, but it
will generalize better on testing data.

The related optimization problem is the regularized least-square that can be
described as follows:

argmin 12 ||Xw−t||2 + 𝛼2 ||w||2, (1)

where 𝛼 ≥ 0 is the regularization parameter.

The closed form solution of (1) to solve for weights w is:

w = (X𝑇 X+𝛼2I)−1X𝑇 t, (2)

where I is an identity matrix of an appropriate size.

The use of ridge regression as opposed to a least-squares fit on some data set
can be very useful. If the data set is too small, the least-squares line may fit the
training data very nicely and minimize the sum of squared error. However, this
may result in poor generalization due to overfitting. Ridge regression mitigates
this issue by trading training performance for better generalization.

b)

The kernel trick consists of mapping data points from an input space into a
higher-dimensional feature space. In classifiers, it is used when data that we
want to classify is not directly linearly separable. The kernel trick implicitly
maps the data to a higher dimensional space using some kernel function in
order for the classes to be linearly separable in the higher-dimension feature
space. If a data point belongs to a class in that feature space, it belongs to that
same class in the input space.

This idea is summarized nicely by Mercer’s theorem:𝑘(x, z) = ⟨Φ(x), Φ(z)⟩𝐻 , ∀x,z ∈ 𝑋,

where 𝐻 is a higher-dimensional Hilbert space (feature space), and Φ ∶ 𝑋 → 𝐻
is a mapping function.

If our linear classifier fails to classify datasets that are not linearly separable in
the input space, we can use the kernel trick to interpret the data in such a way
that it become a nonlinear classifier.

1

Nathan
Highlight

Nathan
Highlight

Some examples of positive definite kernel functions include:

Linear kernel: 𝑘(x, z) = x ⋅ z

Polynomial kernel: 𝑘(x,z) = (x ⋅ z +𝑣)𝑝, 𝑣 ≥ 0, 𝑝 ≥ 0
Gaussian kernel (RBF): 𝑘(x,z) = exp(−𝛾 × ||x−z||22) (Gaussian when 𝛾 = 12𝜎2)
Laplacian kernel: 𝑘(x,z) = exp(− 𝑑(𝑥−𝑧)𝜎)
*Note: Numerator of the fraction in this equation should be 𝑑(x−z) to match
function 𝑘, but can’t figure it out in markdown.

c)

Given a function: 𝑦 = 𝑓(𝑥) + 𝜖, where 𝜖 = 𝑁(0, 𝜎2) is the error.

We also have a set of training data 𝑆 = {(𝑥𝑖, 𝑦𝑖)}, and we fit a model functionℎ(⋅).
We can get the predicted value of 𝑦0 by doing𝑦0 = ℎ(𝑥0) + 𝜖,
and this equation can be rearranged to be𝜖 = 𝑦0 − ℎ(𝑥0) 𝜖2 = (𝑦0 − ℎ(𝑥0))2
According to the Bias-Variance theory, the decomposition of the means squared
error 𝜖2 is as follows:𝔼[(𝑦0 − ℎ(𝑥0))2] = 𝔼[𝜖2] + (𝑓(𝑥0) − ℎ̄(𝑥0))2 + 𝔼[(ℎ(𝑥0) − ℎ̄(𝑥0))2]

Noise: 𝔼[𝜖2] = 𝜎2 describes the amount that the predicted 𝑦0 can differ from
the actual 𝑓(𝑥0) due to noise variance.

Bias2: (𝑓(𝑥0) − ℎ̄(𝑥0))2 = (ℎ̄(𝑥0) − 𝑓(𝑥0))2 describes the difference between
the value our model predicted and the true value, squared.

Variance: 𝔼[(ℎ(𝑥0) − ℎ̄(𝑥0))2] describes the variability of ℎ(𝑥0) when we used
different training sets to fit ℎ(⋅).
Therefore, the Bias-Variance Theory says that we can decompose the error of a
theoretical prediction model to:

Error of prediction model = Noise + Bias2 + Variance

d)

A convex function 𝑓(𝑥) is convex on 𝑋 iff it satisfies Jensen’s inequality. Here
is a diagram to illustrate what we need to know.

2

In this diagram, 𝑓(𝑥) is represented by the red curve and the blue line is the
secant line that connects 𝑓(𝑥1) to 𝑓(𝑥2).𝑡𝑓(𝑥1)+(1−𝑡)𝑓(𝑥2): Point on the secant line at time 𝑡 between 𝑡 = 0 (at 𝑓(𝑥1))
and 𝑡 = 1 (at 𝑓(𝑥2)).𝑓(𝑡𝑥1 + (1 − 𝑡)𝑥2)): Point on 𝑓(𝑥) at that same time 𝑡.
Jensen’s inequality states that 𝑓(𝑥) is convex on 𝑋 iff for any 𝑥1,𝑥2 ∈ 𝑋,𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2) ≥ 𝑓(𝑡𝑥1 + (1 − 𝑡)𝑥2)) for all 0 ≤ 𝑡 ≤ 1.

In other words, the secant line between 𝑓(𝑥1) and 𝑓(𝑥2) stays above or equal to𝑓(𝑥) in between any two points 𝑥1 and 𝑥2 in 𝑋.

It is desirable for an error function to be convex because by definition, a function𝑓(𝑥) that is convex on (−∞, +∞) only has one minimum. In that case, the
single local minimum would also be the global minimum of 𝑓(𝑥). That means
that when we want to optimize something by minimizing the error function, we
will know that any minimum we converge onto is the global minimum, which is
optimal.

2. a)

x = [𝑥0 = 1, 𝑥1, 𝑥2, ..., 𝑥𝑚]𝑇 input vector

w = [𝑤0 = 𝑏, 𝑤1, 𝑤2, ..., 𝑤𝑚]𝑇 weights𝑣 = w ⋅ x = ∑𝑚𝑖=0 𝑤𝑖𝑥𝑖 pre-activation𝜙 ∶ ℝ → ℝ activation function𝑦 = 𝜙(𝑣) neuron output

x: the input vector contains all the inputs that are being considered by a neuron
in a single decision. 𝑥0 is given a value of 1 so that the the total weight of bias𝑏 is considered in the dot product for 𝑣.

w: the weights vector contains all the weights. Each weight is tied to the input
at the same index in x. 𝑤0 = 𝑏 so that a predetermined bias 𝑏 is included in
the dot product for 𝑣.

3

𝑣: dot product of w and x. The pre-activation value is used as the input for
the activation function𝜙 ∶ the activation function is function mapping ℝ → ℝ. Some activation func-
tions output +1 or -1, some have more complex output like this sigmoid function:𝜙(𝑥) = 11+𝑒𝑥𝑝(−𝑎𝑥) , 𝑎 < 0𝑦 = 𝜙(𝑣): output of the activation function.

b)

We have a three-layer multilayer perceptron (MLP) with one hidden layer of L
neurons and one output neuron. This is d-L-1 MLP.

MLPs take an input of dimensionality 𝑑 and the output is of dimensionality 𝑜.
It is essentially a mapping: 𝑓 ∶ ℝ𝑑 → ℝ𝑜.
Perceptron: 𝑦 = 𝜙(𝑣), 𝑣 = x ⋅ w = 𝑑∑𝑖=0 𝑥𝑖𝑤𝑖 (1)

Variables defined and role described in 2. a)

Output Neuron: 𝑦 = 𝜙(𝑣), 𝑣 = 𝐿∑𝑖=0 𝑥𝑖𝛼𝑖, (2)

where 𝛼𝑖 is the weight of the connection between the ith hidden layer neuron
output and the output neuron.

The output neuron takes the output 𝑦 of L hidden layer neurons as its inputs𝑥𝑖 and calculates the final output in the same way as the perceptron described
above.

Let the output of the ith hidden layer neuron be 𝑦(𝐻)𝑖 ≡ 𝑥𝑖.
The three-layer neural network can be described as:𝑦 = 𝜙(𝐿∑𝑖=0 𝛼𝑖(𝑦(𝐻)𝑖)) = 𝜙(𝐿∑𝑖=0 𝛼𝑖(𝜙(𝑑∑𝑗=0 𝑤𝑗𝑖𝑥𝑗))) (3)

4

where 𝑤𝑗𝑖 is the weight for the connection between the jth input and ith hidden
layer neuron.

c)

The Least-Mean-Square (LMS) algorithm performs online gradient descent to
find optimal �̂� weights by minimizing the objective error function:𝐽(�̂�(𝑘)) = 12 𝑒2(𝑘) (1)

It takes a training set 𝑆𝑡𝑟 = {(𝑥(𝑘), 𝑑(𝑘)), 𝑘 = 1, 2, ..., 𝑁} and a learning rate 𝜇
as inputs.

The weight vector �̂� begins by being set to all zeroes. Then, for each sample
in the training set, we compute the instantaneous error, and use that error to
perform the update rule which changes �̂�. Once all samples have been observed,
we return the weight vector �̂� as output.

The update rule for LMS is as follows:�̂�(𝑘 + 1) = �̂�(𝑘) − 𝜇𝐽(�̂�(𝑘))
 = �̂�(𝑘) + 𝜇𝑥(𝑘)𝑒(𝑘), (2)

where:

• 𝑘 is the time-step. Indicates which sample was just observed.
• 𝜇 is the learning rate. We assume that this is constant.
• �̂�(𝑘 + 1) is the weight vector at time-step 𝑘 + 1. We use a circumflex

because the LMS algorithm only produces a per-sample estimate of the
weight vector.

• �̂�(𝑘) is the weight vector at time-step 𝑘.
• 𝐽(�̂�(𝑘)) is the descent direction.
• 𝑥(𝑘) is the sample observed at time-step 𝑘.
• 𝑒(𝑘) is the instantaneous error at time-step 𝑘 (the error after observing

the kth sample)
• We can say that the two lines at (2) are equal because it can be derived

that: 𝐽(�̂�(𝑘)) = −𝑥(𝑘)𝑒(𝑘)
d)

The back-propagation learning algorithm for feed-forward neural networks is
based on gradient descent.

Some necessary definitions:

Let 𝑆𝑡𝑟 = {(𝑥(𝑛), 𝑑(𝑛))}𝑁𝑛=1 be a training set.

Let 𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛) (1)

be the error produced by the jth output neuron.

5

Let ℰ𝑗(𝑛) = 12 ∑𝑗∈𝐶 𝑒2𝑗 (𝑛) (2)

be the instantaneous error of the network, where 𝐶 is the set of all indices for
the output neurons of the network and 𝑛 is the index of the sample that was
observed.

The goal is to minimize the total error of the network. The algorithm starts by
initializing weights.

Forward phase: The forward phase consists of presenting inputs to the network.
At the output layer, we calculate the error of the network described in (2).

Backwards phase: The backwards phase starts and we propagate the error back
through the network to adapt the weights of each neuron. It achieves this by
applying corrections to each of the weights of each neuron in the MLP that
is proportional to the partial derivative of the total error with respect to that
weight. Derivatives are useful because they tell us the sensitivity of the error
function with respect to some variable. Weights that contribute more to the
error of the network will have larger partial derivatives, which means they will
change more.

Forward and backwards phases are usually repeated several times by shuffling
the presentation order of the samples to further train the network.

The weights of the neurons in the hidden layer(s) need to be updated differently
as opposed to the neurons in the output layer. This is because the output neu-
ron weights have direct access to the error of the network, so the calculation
is rather straightforward. Comparatively, weights in hidden layer neurons do
not have direct access to the total error of the MLP. We have to calculate the
derivative of the total error with respect to each weight of all hidden layer neu-
rons by considering the cumulative error of all neurons that indirectly connect
this weight and the output neuron.

3. a)

Hierarchical clustering is an approach to clustering that starts with N singleton
clusters and outputs a partition containing a single cluster. Comparatively, divi-
sive clustering algorithms begin with a partition with a single cluster containing
all data points and outputs a partition with the number of clusters that were
found.

Hierarchical clustering may be more appealing when an iterative visualization of
the cluster merging process is desired. Dendograms are much easier to produce
using a bottom-to-top approach. The option to examine the cluster merging
process iteratively makes it flexible and allows for interaction with the user.
Also, the approach of starting from N clusters and slowly merging them ensures
that they will form sound clusters as opposed to some divisive algorithms that
can be more volatile when there is randomness involved and make decisions that
are suboptimal in the short term.

6

b)

To perform the hierarchical agglomerative clustering discussed in class notes,
we start with an N×N matrix called D, where N is the number of points in
our data set. Every individual point in the data set begins as its own cluster𝐶𝑖. Each entry 𝐷𝑖𝑗 of that matrix is the distance between point 𝐶𝑖 and 𝐶𝑗,𝑑(𝐶𝑖, 𝐶𝑗), with zeroes on the diagonal. Only one side of the diagonal is used,
since the same information is stored on both sides.

The equation to calculate distance between clusters is the following:𝑑(𝐶𝑖, 𝐶𝑗) = 𝑚𝑖𝑛𝑥𝑙∈𝐶𝑖,𝑥𝑘∈𝐶𝑗𝑑(𝑥𝑙, 𝑥𝑘) (1)

*I think calling it 𝑑𝑚𝑖𝑛 in the notes is a bit redundant

For each iteration:

First find the minimum entry in the matrix. In other words, 𝑚𝑖𝑛(𝑑(𝐶𝑖, 𝐶𝑗)).
When that is found, those two clusters are merged into a larger cluster. The two
rows/columns are removed from D and replaced by a row/column representing
the merged cluster. Then, all distances in other rows/columns are updated to
reflect the merged cluster by using (1) and comparing each other cluster to the
new merged cluster.

Agglomerative clustering ends when there is only one cluster remaining com-
prised of the entire data set.

c)

Symbol definitions: - Let 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁} ⊂ ℝ𝑑 be an input dataset

• A partition 𝑃 = {𝐶1, ..., 𝐶𝐾} of 𝑋 is a grouping in 𝐾 subsets

• Each 𝐶𝑖 ∈ 𝑃 is called a cluster, and:

• 𝐶𝑖 ≠ ∅, 𝑖 = 1, ..., 𝐾, “every cluster is non-empty”

• ∪𝐾𝑖=1𝐶𝑖 = 𝑃 , “the union of all clusters is the whole partition”

• 𝐶𝑖 ∩ 𝐶𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, ..., 𝐾, “the intersection of any two distinct
clusters is the empty set”

• A partition 𝑃 has K cluster representatives 𝜇𝑗, 𝑗 = 1, ..., 𝐾
Given all of this, the objective function minimized by the k-means algorithm is
the following:𝐽(𝑃) = 𝐾∑𝑗=1 ∑𝑥𝑖∈𝐶𝑗 ||𝑥𝑖 − 𝜇𝑗||22

7

d)

Input: Data 𝑋 = {𝑥1, ..., 𝑥𝑛}, the number of clusters k, MAX number of
allowed iterations

Output: A partition 𝑃 = {𝐶1, ..., 𝐶𝐾}
1: 𝑡 = 0, 𝑃 = ∅
2: Randomly initialize cluster representatives 𝜇𝑖, 𝑖 = 1, ..., 𝐾
3: loop

4: 𝑡+ = 1
5: Assignment Step: assign each sample 𝑥𝑗 to the cluster with the nearest
 centroid.

6: 𝐶(𝑡)𝑖 = {𝑥𝑗 ∶ 𝑑(𝑥𝑗, 𝜇𝑖) ≤ 𝑑(𝑥𝑗, 𝜇ℎ) for all ℎ = 1, ..., 𝐾}
7: Update Step update the representatives

8: 𝜇(𝑡+1)𝑖 = 1|𝐶(𝑡)𝑖 | ∑𝑥𝑗∈𝐶𝑖 𝑥𝑗
(The cluster representative 𝜇𝑖 is updated to be the new centroid of 𝐶𝑖)
9: Update the partition with the modified clusters: 𝑃 𝑡 = {𝐶(𝑡)1 , ..., 𝐶(𝑡)𝐾 }
10: if 𝑡 ≥ MAX OR 𝑃 𝑡 = 𝑃 𝑡−1 then

11: return 𝑃 𝑡
12: end if

(The end condition of the algorithm is if the max number of iterations is reached
or if the resulting partitions in two subsequent iterations are identical)

13: end loop

e)

I am assuming that the k-means algorithm implementations that the two users
run are identical

This phenomenon is not unexpected because depending on the implementation,
the 𝑘 initial cluster representatives are decided at random. This causes the
initial clusters after the first assignment step to be different, may lead to different
cluster representatives in future iterations, and final partitions can be different.
The lower the maximum number of iterations MAX is, the more likely this is to
occur because the algorithm does not have the number of iterations required to
converge on identical partitions for the two trials. However, even if both trials
terminate because the partitions for two subsequent iterations are identical, the
two output partitions are not guaranteed to be identical.

8

In order to mitigate this occurrence, the implementation could select the 𝑘
initial cluster representatives in some sort of deterministic way. For example,
you could evenly space out k indices over all datapoints and select those to
be initial cluster representative. This would give two users the same output
partitions while lowering the risk of selecting cluster representatives that are all
in the same region (for example, if a data set has nearby datapoints next to
each other in the input list).

9

